Abstract
The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prevailing, with more than 440 million infections and over 5.9 million deaths documented so far since the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The non-availability of treatment further aggravates the scenario, thereby demanding the exploration of pre-existing FDA-approved drugs for their effectiveness against COVID-19. The current research aims to identify potential anti-SARS-CoV-2 drugs using a computational approach and repurpose them if possible. In the present study, we have collected a set of 44 FDA-approved drugs of different classes from a previously published literature with their potential antiviral activity against COVID-19. We have employed both regression- and classification-based quantitative structure–activity relationship (QSAR) modeling to identify critical chemical features essential for anticoronaviral activity. Multiple models with the consensus algorithm were employed for the regression-based approach to improve the predictions. Additionally, we have employed a machine learning-based read-across approach using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and linear discriminant analysis for the efficient prediction of potential drug candidate for COVID-19. Finally, the quantitative prediction ability of different modeling approaches was compared using the sum of ranking differences (SRD). Furthermore, we have predicted a true external set of 98 pharmaceuticals using the developed models for their probable anti-COVID activity and their prediction reliability was checked employing the “Prediction Reliability Indicator” tool available from https://dtclab.webs.com/software-tools. Though the present study does not target any protein of viral interaction, the modeling approaches developed can be helpful for identifying or screening potential anti-coronaviral drug candidates.
Links
BibTeX (Download)
@article{De2022, title = {Repurposing FDA approved drugs as possible anti-SARS-CoV-2 medications using ligand-based computational approaches: sum of ranking difference-based model selection}, author = {Priyanka De, Vinay Kumar, Supratik Kar, Kunal Roy, Jerzy Leszczynski}, doi = {10.1007/s11224-022-01975-3}, year = {2022}, date = {2022-06-07}, journal = {Struct. Chem. }, volume = {33}, pages = {1741\textendash1753}, abstract = {The worldwide burden of coronavirus disease 2019 (COVID-19) is still unremittingly prevailing, with more than 440 million infections and over 5.9 million deaths documented so far since the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The non-availability of treatment further aggravates the scenario, thereby demanding the exploration of pre-existing FDA-approved drugs for their effectiveness against COVID-19. The current research aims to identify potential anti-SARS-CoV-2 drugs using a computational approach and repurpose them if possible. In the present study, we have collected a set of 44 FDA-approved drugs of different classes from a previously published literature with their potential antiviral activity against COVID-19. We have employed both regression- and classification-based quantitative structure\textendashactivity relationship (QSAR) modeling to identify critical chemical features essential for anticoronaviral activity. Multiple models with the consensus algorithm were employed for the regression-based approach to improve the predictions. Additionally, we have employed a machine learning-based read-across approach using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and linear discriminant analysis for the efficient prediction of potential drug candidate for COVID-19. Finally, the quantitative prediction ability of different modeling approaches was compared using the sum of ranking differences (SRD). Furthermore, we have predicted a true external set of 98 pharmaceuticals using the developed models for their probable anti-COVID activity and their prediction reliability was checked employing the “Prediction Reliability Indicator” tool available from https://dtclab.webs.com/software-tools. Though the present study does not target any protein of viral interaction, the modeling approaches developed can be helpful for identifying or screening potential anti-coronaviral drug candidates.}, note = {NSF/CREST HRD-1547754}, keywords = {COVID-19, In silico approaches, Quantitative structure\textendashactivity relationship, Read-across, SARS-CoV-2}, pubstate = {published}, tppubtype = {article} }